テキスト「鉄骨構造の設計」2009 正誤及び訂正表

日本建築学会関東支部 鉄骨構造の設計 改訂執筆 WG

No.	ページ	(誤)及び原記述	(正)及び訂正事項
1	目次	7.7 保有水平耐力の算定	7.7 外装材の検討
	7. 設計例		7.8 主要構造図
	-2		
2	1		
	図 1.1 を右		CB造
	図に変更す	SRC造	0.10 / その他
	る。	6.3	0. 1% 0. 43
		3.4%	0.2%
		DOV	
		RC造 46.6	木造
		24. 9%	63.9
		24. 970	34.1%
		鉄骨造	
		70. 1	
		37. 4%	
3	P8	日本建築センター:冷間成形角形鋼管設	全国官報販売協同組合:冷間成形角形鋼
	表 1.1	計・施工マニュアル (改訂版), 2003	管設計・施工マニュアル, 2008
4	P8表 1.1	日本建築センター: 2001 年版 建築物の構	(削除)
		造関係技術基準解説書	
6	P9 図 2.1.1	角形鋼	角形鋼管
	(図の右端)	円形鋼	円形鋼管
7	P11	堅ロール	竪ロール
	図 2.1.2		
8	P19	その値を 1/3 にしたものが鋼材の引張強	その値を 3 倍したものが鋼材の引張強さ
	下3行	さ(<u>kgf</u> /mm²)に相当するといわれている。	(<u>N</u> /mm²) に相当するといわれている。
9	P26表 2.3.1	JIS G 3444(建築構造用炭素鋼管)	JIS G 3475(建築構造用炭素鋼管)
10	P32上7行	溶接にはさまざまな・・・	溶接工法にはさまざまな・・・
11	P33上6行	ターンバックルボルト(JIS A 5541)	ターンバックルボルト(JIS A 5542)
12	P38上3行	本会「JASS6」	本会「JASS6 ¹⁹ 」

2014/04/15 追加

13	P38下7行	原版	原板
14	P39	13) 日本建築センター: 冷間成形角形鋼	13) 全国官報販売協同組合:冷間成形角
	参考文献	管設計・施工マニュアル(改訂版), 2003	形鋼管設計・施工マニュアル, 2008
15	P39	(追記)	19) 日本建築学会:建築工事標準仕様書
	参考文献		JASS6 鉄骨工事, 2007
16	P53 上 2 行	両面の添板で、・・・・・軽微な場合を除い	両面の添え板で、・・・・図 3.2.2(a)のよう
		て、	な軽微な場合を除いて、
17	P71	7) 日本建築センター: 冷間成形角形鋼管	7) 全国官報販売協同組合:冷間成形角形
		設計・施工マニュアル (改訂版), 2003	鋼管設計・施工マニュアル, 2008
18	P74	図 4.1.2 ばね支持された単純梁モデル変	図 4.1.2 ばね支持された単純梁モデルの
		形	変形
19	P83上9行	(4.1.14)式	(4.1.12)式
20	P83下3行	鋼構造設計規準	鋼構造設計規準 1)
21	P97 上 2 行	$f_t \ge \sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2$	$f_t \ge \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3\tau_{xy}^2}$
22	P112上1行	流れると考えることが出来る。	流れると便宜的に考えることにする。
23	P118上6行	座屈検定とスチフナの算定	座屈検定と中間スチフナー等の算定
24	P168	表 4.9.6 容極式 非容極式	溶極式 非溶極式
25	P173	裏あて金	裏当て金
	図 4.9.21、		
	上3行・4行		
26	176下9行	(4.9.16)式で算定する.	(4.9.16)式で算定する 14).
27	176下5行	wA1:溶接継目の有効面積(mm²)	<i>wA1</i> :溶接継目の有効断面積(mm²)
28	176 最下行	(追加)	本会の「鋼構造限界状態設計指針」2)およ
			び「鋼構造接合部設計指針」3)では、部分
			溶込み溶接継目の軸方向力に対して
			$P_{u}=_{w}A_{2}$ ・ σ_{u} の規定がある。
29	P180上17行	ランク付けが行われており、	品質性能評価制度(5.2.5 参照)が行われて
			おり、
30	P194上10行	確認することが必要である。	確認することが必要である。14)
31	P206上13行	4.10.9 標準接合	4.10.9 標準接合部
32	P216上3行	下弦材軸力差 N1-N4=180-60=	下弦材軸力差 N1-N4=180-120=
		120 kN < Ny/2 = 265 kN	60 kN < Ny/2 = 265 kN
33	P216上4行	下弦材は通し材で、ウェブ材の軸力も小	下弦材は通し材で、ウェブ材の軸力も小
		さいため、設計軸力は軸力差の値を用い	さいため、設計軸力は軸力差の値を用い
		ることとし,	てよいが,
34	P216上7行	N 120	N 60
		高力ボルト必要本数 $n = \frac{1}{R} = \frac{1}{60.3}$	高力ボルト必要本数 $n = \frac{1}{R} = \frac{1}{60.3}$
	D040 [= 4=	=2.0 <4本 可	=1.0 <4本 可
35	P240 上 7 行	(7)仮組立(試作品)検査	(7)組立検査

			2014/04/15 追加
36	240上14行	仮組立検査	組立検査
37	P248	「冷間成形角形鋼管設計施工・マニュア	「2008 年版 冷間成形角形鋼管設計施
	下8行	ル(日本建築センター)」にしたがい	工・マニュアル (全国官報販売協同組合)」
			にしたがい
38	P249	⑧冷間成形角形鋼管設計・施工マニュア	⑧冷間成形角形鋼管設計・施工マニュア
	下2行	ル (日本建築センター)	ル, 2008(全国官報販売協同組合)
39	P259下9行	柱の内のりスパンが等価になる・・	柱の内のり高さが等価になる・・
40	P.283	補剛梁数 n=1 よって	補剛梁数 n=0 よって
	下8行	$\lambda_y = 600/4.16 = 144.2 \le 170 + 20 \times 1 = 190$	$\lambda_y = 600/4.16 = 144.2 \le 170 + 20 \times 0 = 170$
		ОК	ОК
41	P.317	10.5 10.5	10.5 10.5
	モーメント	↓	↓ ↓
	図	2450 3100 2450	△
		8000	8000
		(2.06), (8.44) (8.44) (2.06)	(2.06) (8.44) (8.44) (2.06)
		4.12	5.05 \$ 5.05
		2.1 16.9 2.1	2.1 16.9 2.1
42	P.319	屋根 0.80×10.0×40.0 = 320	屋根 0.80×10.0×40.0 = 320
	(2)式	側壁 0.95×40.0×1.5 = 57 妻壁 0.95×10.0×1.5 = 14 404 kN	側壁 0.95×40.0×1.5 = 57 妻壁 0.95×10.0×1.5×2 = 28 418kN
		歩廊 0.50×1.3×10.0×2.0 = 13	歩廊 0.50×1.3×10.0×2.0 = 13
		全水平力をブレースが負担するため地震力を 1.5 倍する。	全水平力をブレースが負担するため地震力を 1.5 倍する。
		$P1 = 404 \times 0.2 / 2 \times 1.5 = 60.6 \text{ kN}$	$P1 = 418 \times 0.2 / 2 \times 1.5 = 62.7 \text{kN}$
		側 壁 ガーダー 0.95×40.0×4.73+3.0×40.0 = 300kN	側 壁 ガーダー 0.95×40.0×4.50+3.0×40.0 = 291kN
		D0 = (000 /0.010 /0h/0.0/1.5 = 70.5 hN	D0 - (0.0.1 /0.0.1.0 /0)-0.1.1.5 - 55 01 N
		P2 = { 300/2+210/2}×0.2×1.5 = 76.5 kN	P2 = {2 9 1 / 2+210 / 2}×0.2×1.5 =75.2kN
43	P327	横補剛の検定	横補剛の検定
	6~9 行	$\lambda_{y} = L_{iy} = 1920/7.04 = 273$	(梁端部に近い部分に横補剛を設ける方
		横補剛の和 n =7,170+ 20N = 310	法)
		λy≦170+20N の条件	梁材質 400 N/mm²
		(第1種保有耐力横補剛) を満足す	l₀≦250·Af/h カン l₀≦65·iy
		る。	より
			$l_b \le 250 \cdot 5400 / 488 = 2766 \text{ mm}$
			カュつ l _b ≦65·71.4=4641 mm
			lы≦ 2766 m となる。
			端部については、小梁ピッチ 3220mm
			の中間に火打材を入れているので
			$l_{b} = 1610 \text{ mm} \le 2766 \text{ mm OK}$
			塑性化が予想される領域(L/10 または
			2d) は 1900mm で、端部からそれぞれ
			1610mm、3220mm に横補剛材が入っ
			2-1 (2 (2 (2

			ているので、保有耐力横補剛を満足す
			る。
44	P328	継手 2PL-6、M20、ピッチ 80mm	継手 2PL-6、M22、ピッチ 80mm
	上13行	2面摩擦の M20 の短期耐力	2面摩擦の M22 の短期耐力
		$P_B = 1.5 \times 94.2 = 141 \text{ kN}$	$P_B = 1.5 \times 114 = 171 \text{ kN}$
		横方向力 F=27.0 kN を 2 本のボルトで負	横方向力 F=27.0 kN と、長期荷重によ
		担するので、1本あたりの残りのボルト	る鉛直力 Q=14.2 kN を 2 本のボルトで
		耐力 PB'は下記となる。	負担するもので、1本あたりの残りのボ
		$P_{B}'=141-27.0/2=127 \text{ kN}$	ルト耐力 PB'は下記となる。
			$P_{B}'=171-(27.0+14.2)/2=150 \text{ kN}$
		よって、継手部のボルトによる曲げ耐力	よって、継手部のボルトによる曲げ耐力
		は下記となる。	は下記となる。
		$M_B = 127 \times 8.0 = 1016 \text{ kNm} > 980 \text{ kNm}$	$M_{\rm B} = 150 \times 8.0 = 1200 \text{ kNcm} > 1016$
		(偏心曲げ M) OK	kNcm (偏心曲げ M) OK
45	P328	$M_B = 150 \times 8.0 = 1200 \text{ kNcm} > 1016$	M _B =150×8.0=1200 kNcm>980 kNcm
	上19行	kNcm (偏心曲げ M) OK	(偏心曲げ M) OK
46	P333	アンカーボルト 4-M24	アンカーボルト 4-M24
	上6行	$A = 4 \times 4.5252 = 18.08 \text{ cm}^2$	転造ねじ M24 の有効軸部断面積
		$\tau = 165/18.08 = 9.13 \text{ kN/cm}^2$	3.52cm ² より、
		$\tau / f_{\rm s} = 9.13/13.56 = 0.67 < 1.0 \text{ OK}$	$A = 4 \times 3.52 = 14.08 \text{ cm}^2$
			$\tau = 165/14.08 = 11.7 \text{ kN/cm}^2$
			$\tau / f_s = 11.7 / 13.56 = 0.86 < 1.0 \text{ OK}$
47	P334	アンカーボルト 4-M24	アンカーボルト 4-M24
	下4行	$A = 18.08 \text{ cm}^2$	転造ねじ M24 の有効軸部断面積
		(転造ねじを使用するので全断面積 3 有	3.52cm ² より、
		効とした)	$A = 4 \times 3.52 = 14.08 \text{ cm}^2$
		$\tau = 144/18.08 = 7.96 \text{ kN/cm}^2$	$\tau = 144/14.08 = 10.2 \text{ kN/cm}^2$
		$\tau / f_s = 7.96/13.56 = 0.59 < 1.0 \text{ OK}$	$\tau / f_s = 10.2 / 13.56 = 0.75 < 1.0 \text{ OK}$
48	P342	C _f (正圧) 0.50 W (正圧) 214 N/m²	C _f (正圧) 0.50 W (正圧) 214 N/m²
	表	C_f (負圧) $\begin{pmatrix} -2.50 \\ -3.20 \\ -4.30 \end{pmatrix}$ W (負圧) $\begin{pmatrix} 1068 \text{ N/m}^2 \\ -1366 \text{ N/m}^2 \\ -1836 \text{ N/m}^2 \end{pmatrix}$	C_f (負圧) $\begin{pmatrix} -2.50 \\ -3.20 \\ -4.30 \end{pmatrix}$ W (負圧) $\begin{pmatrix} -1068 \text{ N/m}^2 \\ -1366 \text{ N/m}^2 \\ -1836 \text{ N/m}^2 \end{pmatrix}$
40	Dorg		A000 A7/ III
49	P357 壯珊詳細図	D DI 72 dant 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D DI N CNIADOD ZUA + al N CNIDADO 1.
	柱脚詳細図	B.Pl、アンカーボルト共SS400とする。	B.Pl は SN400B、アンカーボルトは SNR400 と
			する。